WIR‘/j@ D

The University of Pennsylvania
ESE 350: Embedded Systems/Microcontroller Laboratory
Final Project Report - Project Winwood
Christopher Champagne & Matthew Howard

May 14th, 2015

i. Table of Contents

1. Introduction
2. Bill of Materials
3. Systems Overview
4. Descriptions of Subsystems
a. Mechanical
b. Hardware
c. Software
5. Conclusion
a. Future Improvements

6. More Information

1. Introduction

Automotive traffic congestion leads to inefficient use of transportation infrastructure,
unnecessary energy costs, increased greenhouse gas emissions, and increased travel times. These
problems also lead to secondary yet significant effects including the need for additional
highways and lanes, magnifying traffic congestion’s environmental and economic footprint. We
posit that much of this congestion can be eliminated by automating both driving and the

exchange of information between vehicles sharing the road.

Most research into self-driving vehicles today focuses on systems that exist within a landscape
filled with human drivers. Because these systems are bound by the conventions and rules of
engagement of human drivers, they can only be slightly more efficient than human drivers in
using the space of the road. Our goal for this project was to produce a set of multiple
autonomous vehicles that are able to collectively make decisions in order to greatly improve
travel time and utilization of infrastructure. These robots would serve as a model and
demonstration of the benefits of a fully autonomous transportation environment on streets and

areas with heavy traffic.

We ran into several challenges during our project, however, and we had to alter our goals for the
project for this course. Our adjusted goal for the project was to have one robot be able to use the
LIDAR to determine its position on the track and to navigate when given commands from a web
console. We also planned to have a second robot provide limited traffic scenarios, but one of the
two LIDAR units started to malfunction during the final hours of the project. Unfortunately,
although we had almost all of the infrastructure in place to support multiple vehicles

simultaneously, we lacked the working hardware for the final demo.

2. Bill of Materials

1. (2x) Autonomous Robot Vehicle

a.

1.

J-

Raspberry Pi 2 (Quad Core, 1IGB DRAM) w/
i. Ubuntu 14.04 Trusty Tahr for ARM!
il. WiringP1 Library
iii. Hiredis C Redis Client
iv. Project Winwood Robot Control

OurLink USB WiFi (802.11b/g/n) Module
CV HB-401 Dual Channel H-Bridge

Piccolo Laser Distance Sensor (XV-11 Neato LIDAR)
(2x) #2368 Pololu 150:1 Micro Metal Gearmotor MP
#1088 Pololu Wheel 32x7mm Pair - White

#954 Pololu Ball Caster with 3/4" Plastic Ball

Custom Chassis made from Lasercut 1/8" MDF
LM7805 5V Linear Regulator

10x AA Batteries

2. 6’ x4’ rectangular field with 10” walls on each side

3. Laptop for input and monitoring

a.

b.

C.

Redis messaging server
Project Winwood Web Console Server on Node.js

Web Browser

4. 802.11n LAN Router

!https://wiki.ubuntu.com/ARM/RaspberryPi

3. Systems Overview

Walled Track
Robot 1
Laptop
C/ C++ Program Meato
- Reads LIDAR 4+ LIDAR
Consale in el > Localization
Broveser s - Drives motors «— H-Bridge
gant > Planning
-t
TCP/P
"
T Robot 2
Node.js Web App e,
.-"‘-._.' CJ C++ Program Neato
- Reads LIDAR +— LIDAR
> Localization
- Drives motors s H-Bridge
> Planning
Project Winwood: Systems Block Diagram 4/21/2015

Figure 1: Systems Block Diagram

Each robot consists of a mechanical subsystem, an electrical subsystem, and a software
subsystem. The mechanical subsystem consists of a drivetrain and a Neato LIDAR. The
mechanical subsystem is controlled and used by the software system through the Raspberry Pi’s
GPIO ports and serial 10 lines. The robots are each responsible for their own closed-loop control
to the destination assigned to them by the laptop over Redis. The software subsystem
simultaneously controls the drivetrain, communicates with the laptop over Redis, reads the
LIDAR data, and processes the LIDAR data to determine its own position. The electrical
subsystem provides power to each of the above components and facilitates communication

between the components.

4. Descriptions of Subsystems

a. Mechanical
For our robots, we wanted them to be as small as possible while still structurally sound and able
to hold all the necessary hardware while driving around. We decided that we would not be able
to find a suitable chassis off the shelf so we chose to lasercut our own chassis pieces and
construct the cars from scratch. We used the PLS flatbed laser cutters in the Rapid Prototyping
Lab and after various iterations and adjustments created two chassis since we only had two
LIDAR units. The chassis consists of two levels, a base to hold the Raspberry Pi and the
H-Bridge, and an upper level to give the LIDAR a flat space with an unobstructed vantage point

for reading in measurements.

L

L]

= U\ VT

Figure 2: Design for Different Components of the Chassis
Top Level, Base Level, Custom Standoff, Motor Holder

We used SolidWorks to design the chassis. In order to ensure that the top level would be sturdy
and that the LIDAR would not sway as the car moved, we had to measure and design the chassis
with press fits. The cutting and building process took multiple attempts to perfect the press fit

because of the laser’s inconsistencies. The chassis were made of MDF (Medium Density

Fiberboard) and the assembled model can be seen below. In addition, we used a limited amount

of superglue to hold the motors and press fits in place.

Figure 3: Assembled Chassis with Some Hardware Attached

b. Hardware

As seen in the hardware schematic below, the main components of each robot was a Raspberry
Pi 2, a Dual H-Bridge, and a XV-11 Neato LIDAR unit. To power each component, we used two
separate sources of AA batteries - one for the Raspberry Pi (9 volts into a 5 volt linear regulator)

and the other for the wheel motors and the LIDAR motor.

] —F =
7] ’— BND

I
:‘IIII
]

Figure 4: Robot Electrical Systems Diagram

The connections between the components can be seen above. The Raspberry Pi is powered by
the output of the 5 volt regulator. It uses the TXO and RXI ports for serial communication to
transmit and receive data to and from the LIDAR module, which allows the robot to determine
its location. The Raspberry Pi connects to the H-Bridge and uses its GPIO pins as well as soft
PWM generation to control the wheel motors’ speeds (and thus the speed and direction of the

robot).

Not included in the schematic above, the Raspberry Pi also connected to a Wifi Module that

allowed the Pi to be programmed and allowed it to connect to the Redis server while operating.

c. Software

The software running on the Raspberry Pi was responsible for reading LIDAR data, processing
that data, listening for commands from the web console, and controlling the robot’s drivetrain.

As a result, our program was spearated into five threads, one parent thread and one for each of

the four aforementioned functions. All of our robot control code was written in C, and the only
non-system libraries we used were WiringPi for controlling the Raspberry Pi’s IO and Hiredis

for communicating over Redis.

The first thread? reads in serial data from the LIDAR unit. The program reads in packets of
sensory information as documented in the XV 11Hacking community site.* Then, it would write
that information into a REVOLUTION_DATA struct, which essentially stores the LIDAR’s
readings as the polar coordinates of a point cloud. The REVOLUTION_DATA struct also holds
important metadata including the number of total revolutions read in and the number of faulty

readings.

The second thread* processes the LIDAR data. It uses the revolution count as stored in
REVOLUTION_ DATA to determine when a new reading is available. Then, it copies the data to a
local array to avoid concurrency issues. It next posts the reading to Redis so that the point cloud
can be graphed in the web console. The thread then performs a Hough Transform, an image
analysis technique used to detect lines in a set of data. This technique is much more powerful and
resistant to outliers than more common line-detection techniques such as the Least Squares
Linear Regression. The Hough Transform creates a joint probability density distribution called a
Hough space, which is then used to find the most likely location of the field’s four walls. From
the locations of the four wall relative to the robot, the program then determines the most likely

location and orientation of the robot relative to the field’s coordinate system. This thread is the

2 https://github.com/moward/project-winwood/blob/master/LIDAR Tests/LIDARReadings.c
3 https://xv11hacking.wikispaces.com/LIDAR+Sensor
4 https://github.com/moward/project-winwood/blob/master/LIDAR Tests/LIDARProcessor.c

https://github.com/moward/project-winwood/blob/master/LidarTests/lidarProcessor.c

most computationally and technically involved and thus requires the power of a microcomputer

such as the Pi 2 rather than that of a microprocessor such as the mBed.

The third thread® subscribes to a publish/subscribe channel over Redis (very similar to a topic in
ROS) that allows it to instantly receive drive commands (passed as an ordered pair of
coordinates) from the web console. The Hiredis library allows the program to publish to the
channel asynchronously, even though subscriptions are a blocking operation in Redis. The thread
shares a mutex with the driver thread to ensure there are no concurrency issues with reading and

writing to the next waypoint.

The final thread® closes the loop by driving the robot’s motors based upon location data from the
LIDAR processor and waypoint data from the drive command thread. The thread will determine
the direction (relative to itself) of the next point and will pivot if the next point is not within 80°
in front of the robot in either direction or else will drive towards the robot on a calculated arc.
The arc motion of the robot’s driving favors smoothness and moving turns over the shortest
distance path. The robot maintains a constant tangential speed until it is with 50mm of the target,
at which point is slows down slightly. Once the robot is within 20mm of the target, it considers
itself at the target and waits for further instructions. The thread sleeps for approximately 100ms
after each loop iteration to avoid overcomputation, which highly increases the likelihood of

errors and slows other threads such as the Lidar processor.

5 https://github.com/moward/project-winwood/blob/master/LIDAR Tests/driveCommand.c
¢ https://github.com/moward/project-winwood/blob/master/LIDAR Tests/runRobot.c#1.99

https://github.com/moward/project-winwood/blob/master/LidarTests/driveCommand.c
https://github.com/moward/project-winwood/blob/master/LidarTests/runRobot.c#L99

Project Winwood Interactive Web Console

Console Graph

e Track Map [~] Update
Data Table

Robo1 Robo2
pos.x - pos.x -86.07
posy - pos.y -119.02
pos.direction - pos.direction 337.650
revolutionCount - revolutionCount 58
errorCount - errorGount o

Figure 5: Interactive Web Console

The web console’ is a lightweight Node.js application which provides a powerful graphical user
interface to the Redis key-value store. It serves a web application over HTTP on port 3000 and
asynchronously transfers information to the browser using both AJAX requests and web socket
messages (provided by Socket.i0). On the client-side, javascript can create a visualization of
either the robots’ location and orientation on the field (shown above as “Track Map”) or display
the LIDAR point cloud from one of the robots using the SVG.js® library. The console could be
easily extended to display additional diagnostic information as well as pass additional commands

to the robot over Redis.

7 https://github.com/moward/project-winwood/tree/master/node-console
8 http://svgjs.com/

10

https://github.com/moward/project-winwood/tree/master/node-console
http://svgjs.com/

5. Conclusion

From completing this project, we learned a great deal about power management, closed loop
control, and communication between multiple systems. The project involved many mechanical
and electrical components, forcing us to learn various skills, such as how to lasercut. The project
also required many complex software components such as processing the LIDAR data, using a
transformation to stabilize the map each robot sees, and having the system respond and drive to a
designated location. Each component of the project was difficult alone, but combining them all
was an entirely other problem. We had to learn how to use threading and mutexes in C to allow

the Raspberry Pi to complete each task concurrently.

By the end of the class, we reached our primary goal of creating a vehicle to be able to use the
LIDAR to determine its position on the track and to navigate when given commands from a user
console. We also had the vehicle communicate its position to the main console, which would

allow other vehicles to know its position in the future when we add more to the environment.

a. Future Improvements
1. Fix broken LIDAR and construct more cars to operate at the same time in the same
world.
2. Procure Lithium Polymer batteries for the Raspberry Pi so that the robot can operate
longer and is lighter.
3. Extend our code to build a virtual map and road structure for the robots to drive along
using our existing data structures.

4. Implement the driving communication and negotiation logic which designed.

11

5. Fine tune the closed loop control so that the cars can drive to their destination smoother.

After these improvements are implemented, these robots can be used to model traffic situations
and can reap the benefits of a fully automated transportation infrastructure. This is in the hope of
showing how a similar system can improve transportation infrastructure utilization, especially in
cities and other crowded roadways. While not all of our goals were reached, we viewed this
project as a success because it is a solid base for implementing the driving negotiations (we built
in structs waiting to be used for maps). Since we built a lot of our system (driving and data
processing code, chassis, and communication protocol) from scratch, the design decisions that

we made along the way suits our project to be extended to implement these future improvements.

12

Figure 6: One of the finished robots

6. More Information

e Project Blog - http:/winwood.matt.how

e Project Git Repository - http://github.com/moward/project-winwood

e Final Demo Video - https://www.youtube.com/watch?v=n0VZildv8so

e ESE 350 Course Webpage - http://www.seas.upenn.edu/~ese350/

13

http://winwood.matt.how/
http://github.com/moward/project-winwood
https://www.youtube.com/watch?v=n0VZiIdv8so
http://www.seas.upenn.edu/~ese350/

	1. Introduction
	2. Bill of Materials
	3. Systems Overview
	4. Descriptions of Subsystems
	a. Mechanical
	b. Hardware
	c. Software

	5. Conclusion
	a. Future Improvements

